Higher dimensional obstruction theory in algebraic categories
نویسندگان
چکیده
منابع مشابه
Directed Algebraic Topology, Categories and Higher Categories
Directed Algebraic Topology is a recent field, deeply linked with Category Theory. A ‘directed space’ has directed homotopies (generally non reversible), directed homology groups (enriched with a preorder) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). On the other hand, directed homotopy can give geometric models for lax higher categories. Applicatio...
متن کاملObstruction Theory in Model Categories
Many examples of obstruction theory can be formulated as the study of when a lift exists in a commutative square. Typically, one of the maps is a cofibration of some sort and the opposite map is a fibration, and there is a functorial obstruction class that determines whether a lift exists. Working in an arbitrary pointed proper model category, we classify the cofibrations that have such an obst...
متن کاملHigher Dimensional Categories: Model Categories and Weak Factorisation Systems
Loosely speaking, “homotopy theory” is a perspective which treats objects as equivalent if they have the same “shape” which, for a category theorist, occurs when there exists a certain class W of morphisms that one would like to invert, but which are not in fact isomorphisms. Model categories provide a setting in which one can do “abstract homotopy theory” in subjects far removed from the origi...
متن کاملCubical Categories for Higher-Dimensional Parametricity
Reynolds’ theory of relational parametricity formalizes parametric polymorphism for System F, thus capturing the idea that polymorphically typed System F programs always map related inputs to related results. This paper shows that Reynolds’ theory can be seen as the instantiation at dimension 1 of a theory of relational parametricity for System F that holds at all higher dimensions, including i...
متن کاملHigher-dimensional categories with finite derivation type
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalising the one introduced by Squier for word rewriting systems. We characterise this property by using the notion of critical branching. In particular, we define sufficient conditions f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1987
ISSN: 0022-4049
DOI: 10.1016/0022-4049(87)90123-x